Going beyond the Fab Five: Helping students cope with the unique linguistic challenges of expository reading in intermediate grades

Zhihui Fang

Without specific training in the art of expository reading, students will find expository texts alienating and difficult to read.

In our view no literacy program is worthy of that name if it ignores the richest and most effective resource which resides in the lexicogrammar [of a language]. (Williams & Hasan, 1996, p. xvi)

It is well documented that many students experience difficulty when making the transition from the “learning-to-read” stage in primary grades (1–3) to the “reading-to-learn” stage in intermediate grades in U.S. schools (4–8; Campbell, Hombo, & Mazzeo, 2000; Chall, Jacobs, & Baldwin, 1990). One major contributor to this difficulty is the difference in the kinds of texts that students are expected to read and write. In primary grades, students are exposed primarily to storybooks whereas in intermediate grades the reading materials that students encounter become more heavily dominated by expository texts. Despite this shift in reading materials, little discrimination is made in the type of reading instruction that students receive between primary and intermediate grades. Specifically, reading instruction for intermediate grades in many schools continues to focus on a set of basic, generalizable skills and strategies that address the five areas identified by the National Reading Panel (National Institute of Child Health and Human Development [NICHD], 2000) as central to the reading process—namely phonemic awareness, phonics, fluency, vocabulary, and comprehension strategies. The continuing emphasis on these “Fab Five,” which are the hallmark of primary-grade reading instruction, does not, however, adequately prepare students to read the more challenging expository texts of, for example, science and social studies that await them in intermediate grades and beyond.

In this article, I argue that reading instruction in intermediate grades needs to go beyond the Fab Five because the challenges that students face in reading the expository texts of intermediate grades are distinctively different from those they experience in reading the storybooks of primary grades. I suggest that without specific training in the art of expository reading, students will find expository texts alienating and difficult to read. To this end, I compare and contrast what it takes to comprehend two texts—a primary-grade story and an intermediate-grade science passage (see Figure 1)—and draw implications from this examination for reading instruction in intermediate grades. The story text is an excerpt from “Arthur’s TV Trouble” (Brown, 2004), which is included in the collected volume The World of Arthur and Friends and represents the kind of texts that are the main literacy staple for primary-grade children. The science passage is more typical of the expository sort of texts that students are
likely to encounter in intermediate grades and beyond. It comes from *Genes and DNA* (Walker, 2003)—an award-winning title from the 2004 list of Outstanding Science Trade Books for Students K–12 compiled by the National Science Teachers Association in cooperation with the Children’s Book Council.

Reading the primary-grade story

In order to comprehend the primary-grade story (the *Arthur* text), students must be able to recognize at least 90–95% of the words and know what they mean. They must also be able to read the text with some degree of fluency using appropriate speed, phrasing, prosody, and intonation so that they can channel enough cognitive resources for building a “situation model” (Kintsch, 2004) of the text. Building such a situation model, however, requires more than knowledge of individual words and sentences, which are in this case quite similar to those that children typically use in their everyday social language. In addition, students need a “habitus” (Bourdieu, 1977), or “cultural model” (Gee, 2001), of a modern western middle class childhood world as well as relevant personal experiences. A habitus or cultural model is a person’s often tacit and taken-for-granted schemata or sense—storylines, images, theories, metaphors—about a particular cultural phenomenon such as birthdays and Christmas.

Figure 1

Sample texts for primary and intermediate grades

“Arthur’s TV Trouble”

Ads for the Treat Timer were everywhere. Now Arthur really wanted one.

Arthur counted his money. D.W. helped.

“Even with all of my birthday money,” he said, “I only have ten dollars and three cents.”

“I know what you’re thinking,” said D.W. She ran to protect her cash register.

Arthur decided to ask Dad for an advance on his allowance.

“Gee, I’d love to help,” said Dad, “but my catering business is a little slow right now.”

Arthur knew Mom would understand.

“Money doesn’t grow on trees,” said Mother, “and I think Pal likes treats from you, not a machine.” (Brown, 2004, pp. 174–177)

“DNA: The Molecule of Life”

A time span of 50 years is insignificant compared to the billions of years that life has existed on Earth. But the 50 years between 1953–2003 are of incredible significance to biology because it was during that half of a century that many of the secrets of life were revealed. The trigger for these revelations was one of the great science feats of all time—the discovery of the structure of DNA, the material from which genes are made. Once DNA’s structure was known scientists were able to figure out how it provides a library of instructions that control the cells that make up our bodies and those of all other living things. At the beginning of this century the Human Genome Project made another great leap forward by completing the enormous task of reading the letters that make up the instructions contained in our DNA. This achievement marks the start of a process that one day will allow humans to understand completely how DNA makes us all human beings but also makes us unique individuals. (Walker, 2003, p. 25)
For example, students will need to have a concept of the advertisement-oriented capitalist economy and understand the role television commercials play in enticing children (and adults) into purchasing merchandise that may otherwise be unknown or unappealing to the public. In addition, students will need to understand the following concepts in order to comprehend the Arthur text:

- Birthday money—the significance of, as well as rituals associated with, birthdays in middle class American children’s lives
- Cash register—the concept of a piggy bank for children in American middle class families
- Advances on allowances—allocation of financial resources in American middle class families

Based on an understanding of these and other concepts, students must also be able to bridge conceptual gaps and make the following inferences:

- “Catering business is...slow” means that Dad is not earning enough income for the family and thus cannot afford to give Arthur spending money. This also suggests that children’s toys are not essential to the welfare of the family.
- “Money doesn’t grow on trees” means that money is not easy to come by and thus Mom cannot allow Arthur the luxury of spending money on toys.
- “Arthur counted his money” presumes that Arthur has his own savings at home. His money likely comes from birthdays and an allowance.
- Treat Timer must cost more than “ten dollars and three cents.”
- D.W. “ran to protect her cash register” suggests that Arthur was going to take money from D.W. It also implies that D.W. has a piggy bank of her own.

In addition, students must be able, based on their cultural models of the Western middle class childhood world and on their prior exposure to other books in the Arthur series, to infer the relationship between Arthur and D.W., determine what the Treat Timer might be, guess who Pal might be, and make a connection between Treat Timer and Pal.

It is clear from the above analysis that reading is indeed a complex task that involves the orchestration of a multitude of processes. These processes cannot be set in motion without any of the following three pillars of comprehension:

1. Understanding of the language (e.g., words, sentences, discourse structure) through which the story is constructed
2. Possession of relevant experiences and background knowledge that are stated, assumed, implied, or taken for granted in the text
3. Command of a repertoire of self-regulating strategies (e.g., monitoring, inferring, visualizing, questioning, clarifying), the activation and effective use of which depend heavily on the reader’s understanding of text language and knowledge of its subject matter

Reading the intermediate-grade science passage

Now, let’s look at the intermediate-grade science text (about DNA) and see what it takes to comprehend it. As is the case with the Arthur text, linguistic knowledge, relevant background knowledge, and self-regulating strategies are all needed to comprehend the DNA text. While self-regulating strategies are generalizable across both text types, the nature of linguistic and background knowledge required of the expository reading differs considerably from that required of the story reading. With the Arthur text, the background knowledge that is needed is what we
would call commonsensical knowledge, and it is developed largely through social interaction in everyday ordinary life. The background knowledge required for the DNA text, however, is further removed from students’ everyday ordinary life. It is much more specialized and typically developed through schooling.

In terms of linguistic knowledge, we find that the Arthur text sounds familiar and comfortable to students because its language closely approximates the type of language that children would normally use in their everyday social interaction. Students can understand it with relative ease when the text is read or spoken. On the contrary, the language used in the DNA text sounds much less like speech. It is not the type of language that students would normally (or ever) use in their everyday social interaction. It sounds less familiar, less comfortable, and more alienating. Students probably would not be able to understand it when they hear it. When they read it silently, they will likewise find it difficult to process and comprehend. What exactly are the sources of this comprehension difficulty beyond potential lack of background knowledge? In the next section, I explore the specific linguistic challenges involved in reading expository texts like the DNA excerpt.

Unique linguistic challenges of expository reading

Language varies in meaningful and systematic ways as it is used in different contexts and for different purposes (Halliday & Hasan, 1985). As students move through schooling from primary to intermediate grades, the sort of educational knowledge that they are expected to learn (e.g., the content of science, social studies, and math) becomes more complex and further removed from their daily concrete experiences (Christie, 1998). The language that is used to construct such specialized knowledge is, thus, different from the language that is used to construct the commonsensical knowledge of everyday ordinary life. I discuss several unique features of expository language, highlighting the comprehension challenges they pose for reading comprehension.

Technicality

As noted earlier, the DNA text deals with a topic (i.e., genes and DNA) that is far removed from children’s everyday ordinary life experiences. It is more technical and specialized than the Arthur text, which addresses a mundane topic (i.e., buying toys) that permeates children’s everyday life. The technicality of the expository excerpt is constructed by two types of words: those that are specifically coined for the field of science and those that occur regularly in children’s everyday spoken language but assume nonvernacular meanings when used in the science context. Words such as genes, genome, cell, DNA, and biology belong to the first category. Words that belong to the second category include library, instruction, and read. Together, these two types of words convey specialized meanings that define the discipline of genes and DNA. When there is a large concentration of technical words such as these in a short chunk of text comprehension often suffers (Fang, 2006).

Abstraction

The DNA text is also more abstract than the Arthur text. What makes the DNA text more abstract is the use of not only technical vocabulary terms such as those mentioned earlier but also certain types of nouns such as discovery, significance, instruction, beginning, revelation, and achievement. Nouns like these are derived from and normally expressed in the more concrete language of everyday life as verbs (discover, instruct, begin, reveal, achieve) or adjectives (significant).

These abstract nouns enable the author to synthesize what has been said in the prior discourse into a theoretical or virtual entity so that it becomes the starting point for further discussion. This in effect helps create text flow and facilitates...
the presentation of information and the development of arguments. The process of turning verbs and adjectives into nouns is called “nominalization.” For example, “these revelations” is used to summarize what was stated in the previous sentence (i.e., “many of the secrets of life were revealed”) so that it becomes the departure point for subsequent discussion on the topic. In a similar manner, “This achievement” allows the author to synthesize what was presented in the previous sentence (i.e., “the Human Genome Project made another great leap forward”) into a virtual entity that becomes the subject of ensuing discussion. In addition, when the adjective significant is turned into significance the noun can be expanded and modified by adding adjectives like incredible. This allows the author to make a judgment and convey value when discussing the scientific discovery. At the same time, however, these “de-verbal” and “de-adjectival” nouns sound more abstract because they embody generalization or abstraction from the immediate, lived experiences of everyday life. Heavy uses of these nouns can present significant problems to students’ comprehension (Fang, Schleppegrell, & Cox, 2006).

Density

Another characteristic of the DNA text is that it is loaded with more information than the Arthur text. One crude way to gauge the informational density of a text is to calculate the average number of content words (e.g., nouns, verbs, adjective) per sentence—the higher the number the denser the text (see Halliday [1987] for more accurate procedures to assess a text’s informational density). The Arthur text has a total of 53 content words in 11 sentences, yielding a density score of 4.8. The DNA text, however, has 85 content words in 6 sentences, yielding a density score of 14.2, which is almost three times as high as that of the Arthur text. The high density of information in the DNA text can create cognitive overload for readers and slow down their print processing.

The informational density of the DNA text is achieved primarily through the use of lengthy, complex nouns. A comparison of the nouns in the two sample texts brings this to light. The nouns in the Arthur text are generally short and simple, consisting primarily of proper nouns (Arthur, D.W.) and pronouns (I, he). On the contrary, the nouns in the DNA text are long and complex, as the following examples show:

- a library of instructions that control the cells that make up our bodies and those of all other living things
- the enormous task of reading the letters that make up the instructions contained in our DNA
- the start of a process that one day will allow humans to understand completely how DNA makes us all human beings but also makes us unique individuals

Overall, the DNA text averages 7.4 words per noun, which is 4.5 times as long as the nouns in the Arthur text (1.6 words per noun). According to Fang et al. (2006), nouns are the most powerful grammatical resource that contributes to a text’s informational density. One reason for this is that in English nouns can be expanded almost indefinitely, thus allowing the author to successively add information to facilitate the presentation of information and the development of argument.

For example, the simple noun task can be premodified by adding a determiner (the) and an adjective (enormous); it can also be postmodified with a prepositional phrase (of reading the letters that make up the instructions contained in our DNA). The prepositional phrase contains an embedded clause (that make up the instructions contained in our DNA). In a library of instructions that control the cells that make up our bodies and those of all other living things, the head noun library is postmodified by a prepositional phrase (of instructions, which is further modified by an embedded clause (that control the cells that make up our bodies and those of all other living things). This embedded clause includes another embedded clause (that make up our bodies and those of
all other living things). These multiple layers of modification and embedding make the noun appear both lengthy and complex. They present a significant obstacle to comprehension due to the constraint in human short-term working memory (Miller, 1967). Because much more information is packed into the nominal structure in the DNA text than in the Arthur text, when students read the DNA text they will have to process more information.

Authoritativeness

Finally, unlike the Arthur text, which sounds interpersonal and involving, in part because of its use of everyday vocabulary and syntax and its inclusion of human dialogues, the DNA text sounds much more distanced, impersonal, and authoritative. These features are realized through the use of a number of grammatical devices, including

- Technical vocabulary (e.g., cells, DNA, genes), which conveys specialized, non-commonsensical knowledge of science
- Declarative, instead of imperative or interrogative, sentences (e.g., A time span of 50 years is insignificant...), which present information in an assertive manner
- Passive voice (e.g., was known), which gives the text a flavor of objectivity by enabling the suppression of human actors and other agents behind the scientific discovery
- Generalized or virtual participants (e.g., scientists, Human Genome Project), which flavor the text with impersonality and impartiality by avoiding the mention of specific scientists contributing to the scientific advance

Taken together, these linguistic devices enable the author to present information accurately, objectively, and assertively. They give the DNA text an aura of authoritativeness, making it appear less involving and more alienating to students. This is contrary to the Arthur text, which uses a different set of grammatical resources (e.g., specific participants, dialogues, everyday commonsensical language). It is no wonder that students tend to feel more comfortable with the familiar and interactive language through which the story is constructed and less comfortable with the more “distanced” language of the expository text.

Helping students cope with the expository language

I have demonstrated that expository texts for intermediate grades employ a special kind of language—one that is distinct from the language typical of primary-grade storybooks. Because of this difference, the basic, generalizable reading skills and strategies (e.g., the Fab Five) that constitute the core of reading instruction in many U.S. classrooms are not sufficient to ensure comprehension of expository texts. Students need additional instruction that focuses on reading skills and strategies that are specific to expository texts. In this section, I introduce a few activities that answer this need. Informed by systemic functional linguistics (Halliday & Matthiessen, 2004) and related work by language and literacy educators (e.g., Derewianka, 1991; Fang & Schleppegrell, 2008), these activities are designed to promote students’ understanding of, as well as their ability to cope with, the unique language of expository texts.

Exposure to expository texts

One of the reasons why students feel more uncomfortable with expository text is that they have limited exposure to it. Studies of the literacy practices in primary classrooms (e.g., Duke, 2000; Fang, 2002) have reported that students in the early grades engaged in very little expository reading and writing. If students are immersed in storybooks, the transition to expository texts may not always be as smooth as we sometimes assume (Derewianka, 1991). Thus, one way to increase students’ ability to handle expository texts is to expose them to lots of these texts. While all
children need exposure to a wide range of text types, older children in particular need to engage with well-written texts that provide demonstrations of features of expository writing. For this purpose, teachers should have a classroom or school library full of quality expository texts that consist of trade books (see, for example, www.nsta.org/ostbc and www.socialstudies.org/resources/notable for award-winning literature in science and social studies), magazines (e.g., Kids Discover, National Geographic Explorer, Science), newspapers, and journals, as well as traditional textbooks and other primary source documents. These resources are central to the development of content-rich literacy curricula needed for building students’ vocabulary and content knowledge. They also provide authentic expository language that can better prepare students to deal with the challenges of expository reading in intermediate grades and beyond. Teachers should allocate time for independent reading in class as well as through a home reading program. They should also regularly select quality expository books for read-alouds in the class. The bottom line is that if students have little experience reading expository texts, they will be more likely to experience difficulty handling the more demanding reading materials in later years of schooling.

Simply providing students with access to quality expository books is a necessary, but often insufficient, condition for improving students’ ability to handle the more advanced expository texts. Students do not just “get used to” the seemingly “foreign” language of expository texts through exposure and immersion. They need strategies for unpacking this language and for developing a keen awareness of its unique characteristics. Some of these strategies are described in the following sections.

Noun deconstruction and expansion

It is clear from the previous comparative analysis that expository texts tend to use long nouns packed with information. These nouns are a potential source of comprehension difficulty in expository reading. One way to help students handle lengthy nouns is to deconstruct them. In noun deconstruction, students analyze the structure of a lengthy noun phrase by identifying its various functional components. For example, the structure of the lengthy noun phrase (italicized) in the following sentence from a local newspaper is illustrated in Table 1.

> Four guilty verdicts ended a seven-week CIA leak trial that focused new attention on the Bush administration’s much-criticized handling of intelligence reports about weapons of mass destruction in the run-up to the Iraq war. (Associated Press, 2007, p. 1A)

Structural analysis of this sort can further students’ understanding of how information is typically packed and expanded in expository texts. Conversely, students can engage in a “noun expansion” task (Unsworth, 2005; see Table 2). These tasks require expansion of a simple noun, such as claims, into a lengthy noun phrase with pre- or postmodifiers. For example, former Enron chief Jeffrey Skilling’s repeated claims of ignorance about the tangled financial deals that brought his company to bankruptcy.

Teachers can start out by having students add one or two modifiers to a simple noun and gradually increase the number of modifiers as students gain more comfort with the task. This can be made into a game of sorts by having one student (Student A) nominate a pre- or postmodifier category, and then another student (Student B) has to come up with the appropriate words, phrases, or clauses that realize that category. If Student B answers correctly, he or she scores one point and gets to nominate the next category. If Student B’s answer is incorrect, he or she is out of the game. This game can also be modified into a “building noun train” contest to see which student (or group of students) can make the longest “noun train” by adding pre- or postmodifiers to a head noun.

Sentence completion

As demonstrated earlier with the DNA text, abstract nouns (i.e., nominalizations) are often used
to synthesize a chunk of prior text to create new technical terms and virtual entities and to facilitate flow of discussion. To familiarize students with this way of presenting information and structuring text, teachers can design some sentence completion tasks. Sentence completion works like cloze. It requires students to synthesize information in prior text into a noun (or noun phrase) that can then become the subject of the next sentence. Teachers can identify passages in

Table 1

<table>
<thead>
<tr>
<th>Sentence components</th>
<th>Grammatical category</th>
<th>Functional category</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Article</td>
<td>Premodifier</td>
<td>How many?</td>
</tr>
<tr>
<td>seven-week</td>
<td>Noun phrase</td>
<td>Premodifier</td>
<td>How long?</td>
</tr>
<tr>
<td>CIA leak</td>
<td>Noun phrase</td>
<td>Premodifier</td>
<td>Which one?</td>
</tr>
<tr>
<td>trial</td>
<td>Noun</td>
<td>Head</td>
<td>Thing</td>
</tr>
<tr>
<td>that focused new attention on the Bush administration’s much-criticized handling of intelligence reports about weapons of mass destruction in the run-up to the Iraq war</td>
<td>Embedded clause</td>
<td>Postmodifier</td>
<td>More details</td>
</tr>
</tbody>
</table>

Note. The lengthy noun “the Bush administration’s much-criticized handling of intelligence reports about weapons of mass destruction in the run-up to the Iraq war” in the embedded clause can be further deconstructed to show students how information is packaged in this phrase.

Table 2

<table>
<thead>
<tr>
<th>Nominal structure</th>
<th>Grammatical category</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>Noun</td>
<td>claims</td>
</tr>
<tr>
<td>Add premodifier</td>
<td>Noun phrase</td>
<td>former Enron chief Jeffrey Skilling’s claims</td>
</tr>
<tr>
<td>Add another premodifier</td>
<td>Adjective</td>
<td>former Enron chief Jeffrey Skilling’s repeated claims</td>
</tr>
<tr>
<td>Add postmodifier</td>
<td>Prepositional phrase</td>
<td>former Enron chief Jeffrey Skilling’s repeated claims of ignorance about the tangled financial deals</td>
</tr>
<tr>
<td>Add another postmodifier</td>
<td>Embedded clause</td>
<td>former Enron chief Jeffrey Skilling’s repeated claims of ignorance about the tangled financial deals that brought his company to bankruptcy</td>
</tr>
</tbody>
</table>
expository texts that contain nominalizations and leave them blank for students to complete (see example 1 below). As a variation, the more everyday renditions of these abstract nouns can be used as clues, as is shown in example 2.

1. During winter, shelves of ice extend from the land out over the ocean, essentially doubling the size of the continent. During summer, however, the ice melts, increasing the volume of water in the ocean. ______________ has important effects on worldwide weather patterns and is a force that drives ocean currents. [Sample key: The yearly freezing and thawing of this ice]

2. Plate tectonics is one process that causes changing environments on Earth. As plates on Earth’s surface moved over time, continents collided with and separated from each other many times. ______________ (i) caused ______________ (ii, mountain to build) and ______________ (iii, seas to drain). ______________ (iv, continents separated and this) caused deeper seas to develop between continents. ______________ (v, As a result, land and sea rearrange, and this) still causes changes in climates today. [Sample keys: (i) continental collisions, (ii) mountain building, (iii) the draining of seas, (iv) continental separation, (v) This rearranging of land and sea] (Original passage from Glencoe/McGraw-Hill, 2000, p. 674)

Sentence completion tasks such as these can help students see how nominalization allows the text writer to take a wide range of grammatical and semantic data that have previously been presented in the text and then express them or refer to them for further discussion. They allow students to gain insights to the development of cohesive texts. An understanding of how text is developed, in turn, facilitates text comprehension (Smith, 1983).

Sentence transformation

Another strategy for helping students develop familiarity with and understanding of expository language is sentence transformation. For example, the more everyday language in sentence A below can be transformed into B, which appeared in an expository text. Conversely, students can practice turning the more expository-like language in the texts they read or in their own writing into everyday language.

A. When the rain forests in Africa are destroyed, the climate becomes drier and crops die.

B. The destruction of the rain forests in Africa has led to droughts and crop failures. (Kids Discover, 2006, p. 13)

These exercises help bridge the gap between the specialist language of expository texts and the commonsensical language used by students. By moving back and forth between the familiar and the unfamiliar patterns of language, students will gain greater appreciation for and deeper understanding of the unique characteristics of expository language and develop more confidence when reading or writing expository texts.

Syntactic anatomy

Unlike the Arthur text that uses mostly simple sentences, the DNA text uses more complex sentences with both subordinate and embedded clauses. Complex sentences are needed in expository texts because they enable the author to more accurately and effectively present information and make logical arguments (Schleppegrell, 2004). However, comprehension problems can arise when sentences comprise multiple layers of semantic links and dependency relationships, which take time for students to sort through. Overemphasis on fluency in reading these texts can, thus, be detrimental. To make sense of complex sentence structures in expository texts, students, especially English-language learners and struggling readers, can conduct syntactic anatomy in order to identify relations among different clauses in the sentence, as research (e.g., Mokhtari & Thompson, 2006; Scott, 2004) has suggested that syntactic skills are significantly related to
It had already been known that DNA was the molecule of which genes are made when two young scientists, James Watson and Francis Crick, took on the challenge of figuring out its structure. In 1953 they constructed a model that showed that each DNA molecule consisted of two long chains that spiraled around each other in a twisted ladder shape—a double helix. (Walker, 2003, p. 38)

In this example, the first sentence consists of two subordinate clauses; the first is introduced by that (that DNA was the molecule of which genes are made) and the second is introduced by when (when two young scientists, James Watson and Francis Crick, took on the challenge of figuring out its structure). In the first subordinate clause is an embedded clause introduced by which (of which genes are made). In the second sentence, the first linking word (that) introduces an embedded clause to modify the phrase a model (that showed that each DNA molecule consisted of two long chains that spiraled around each other in a twisted ladder shape—a double helix). Within this embedded clause, a second that introduces a subordinate clause following the verb showed (that each DNA molecule consisted of two long chains that spiraled around each other in a twisted ladder shape—a double helix). Within this subordinate clause, an embedded clause introduced by that is used to modify the phrase two long chains (that spiraled around each other in a twisted ladder shape—a double helix). Syntactic anatomy of this sort helps students develop insights on how complex sentences are constructed and can ease their comprehension difficulty.

Paraphrase

Finally, because expository language is often simultaneously technical, dense, abstract, and impersonal, students should learn how to paraphrase it into their own language. Reading expository texts involves learning how to translate the patterns of expository language into everyday spoken language. As Lemke (1989) observed, the problem of learning through science [and other expository texts] is fundamentally a problem of translating the patterns of written language into those of spoken language. Spoken language is the medium through which we reason ourselves and talk our way through problems to answer. It is, for the most part, the medium in which we understand and comprehend. (p. 136)

One way to engage students in paraphrasing is to have them develop a radio show series (Unsworth, 2005). The teacher can divide the class into small groups of three and have each group produce a radio show (approximately three to five minutes) on the topic they have been studying. Specifically, students are given an informational text on that topic and instructed to turn the written text into a spoken script. They write out their script on paper and practice speaking it on audiotape. After taping, students listen to their shows and describe what they did to the reading material to make it sound more like the kind of language typical of radio talk shows. They can compare the original text and their radio script on an overhead projector, using a color marker to highlight the grammatical differences between the two pieces. This experience will enhance students’ awareness of the grammatical and functional differences between expository language and everyday spoken language.

Students cannot rely only on the Fab Five

Learning to deal with the transition from primary to intermediate grades involves learning to handle language in new ways (Christie, 1998). Expository texts for intermediate grades contain special features that make them distinct from primary-grade storybooks. As such, they can present unique comprehension challenges. Students need guidance in recognizing and responding to these challenges. They can no longer rely solely on the
Fab Five in their interaction with expository texts. They need additional strategies that specifically address the language demands of such texts. The strategies described previously answer this need. They can help students develop insights on the nature and character of expository language, enabling them to better cope with the language demands of expository reading and writing. These strategies should be used with connected texts in the context of authentic reading and writing and within the framework of reading and writing workshops, focusing on the functions that different grammatical resources of expository language serve in the presentation of information, structure of text, and development of argument. They are to be carried out in a manner that gradually removes scaffolds. As Yore (2004) described in his discussion of strategy instruction with science texts,

The instruction should be embedded in the actual text assigned and should reflect the interactive, constructive aspects of making sense of text and of effective explicit instruction. The selected strategy should be modeled by the teacher, practiced by the students with guidance from the teacher, used in controlled situations by students with assigned text, and transferred in other reading assignments and texts by the students.

Expository language is a key medium through which school knowledge is constructed. It is also the primary means through which students’ academic literacy is demonstrated and assessed at the intermediate-grade level and beyond. It is imperative that more attention be given to the discourse features of this language. Without an understanding of and appreciation for the “peculiar” forms and functions of expository language, students will be severely handicapped in reading and permanently left behind in schooling.

REFERENCES
Maryborough, VIC, Australia: Primary English Teaching Association.

LITERATURE CITED

